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Abstract

The goal of autonomous vehicles is to navigate public roads safely and comfortably.
To enforce safety, traditional planning approaches rely on handcrafted rules to
generate trajectories. Machine learning-based systems, on the other hand, scale
with data and are able to learn more complex behaviors. However, they often
ignore that agents and self-driving vehicle trajectory distributions can be leveraged
to improve safety. In this paper, we propose modeling a distribution over multiple
future trajectories for both the self-driving vehicle and other road agents, using a
unified neural network architecture for prediction and planning. During inference,
we select the planning trajectory that minimizes a cost taking into account safety
and the predicted probabilities. Our approach does not depend on any rule-based
planners for trajectory generation or optimization, improves with more training
data and is simple to implement. We extensively evaluate our method through a
realistic simulator and show that the predicted trajectory distribution corresponds to
different driving profiles. We also successfully deploy it on a self-driving vehicle on
urban public roads, confirming that it drives safely without compromising comfort.
The code for training and testing our model on a public prediction dataset and the
video of the road test are available at https://woven.mobi/safepathnet.

1 Introduction

In the last decade, Autonomous Driving (AD) has been largely explored by researchers in academia
and industry. Against expectations of many in the field, Self-Driving Vehicles (SDVs) are still
constrained to limited operational domains and not yet ready to be deployed at scale. Among the AD
stack, the weak link appears to be the planning module, which is where most decision-making takes
place. This component not only has to reason about other road actors’ actions and cover different
driving behaviors, it must also guarantee safety and robustness against the long tail distribution of
driving scenarios.

Traditional rule-based systems [19] addressed the planning task by defining progressively larger sets
of hand-crafted rules, but they proved to scale poorly to complex or unfamiliar driving scenarios.
While several data-driven approaches [34, 3, 35, 26, 9] were presented in recent years to improve
scalability and performance by leveraging large datasets, they either approach planning as a unimodal
trajectory forecasting problem, lack safety checks, or are computationally inefficient. Recently, [32]
presented a hybrid two-stage approach consisting of a ML-based planner for trajectory forecasting
and a safety fallback layer. However, the method relies on both an external prediction module and a
rule-based trajectory generator that does not learn nor improve with data.
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Figure 1: High-level overview of SafePathNet, a ML approach improving on-road safety of self-
driving vehicles (SDVs). A neural network receives a vectorized scene representation, combining
map, road agent and SDV states. It then predicts a set of future SDV driving plans (in red) and a set
of agent future trajectories (in blue) with associated probabilities. A safe driving trajectory is selected
given this data, and executed by the SDV in the real world.

In this paper, we propose SafePathNet, a ML-based prediction and planning system that leverages
data uncertainty and scales with training data, while ensuring a safety profile similar to previous
methods. SafePathNet jointly models prediction and planning as distributions of future trajectories,
and leverages predictions to improve safety at inference time. Exploiting the powerful attention
mechanism of the Transfomer module [31], we propose a deep neural network architecture that
predicts diverse SDV’s trajectories and other agents’ future locations given a vectorized representation
of the scene. To model data uncertainty, we use a Mixture of Experts (MoE) approach [15] that
learns a distribution over trajectories. To improve safety of the SDV’s plan, we perform cost-sensitive
selection from the trajectory distribution according to the road agents’ predicted locations to avoid
collisions. This approach to safety is efficiently performed within the model itself, scales with data,
and does not rely on any additional external signals, as SafePathNet selects the trajectory from the
predicted distribution. Simulation and on-road tests show that the proposed approach models and
exploits different driving profiles to improve planning safety without substantially impacting comfort.

In summary, our contributions are:

• We propose to model the distribution of future trajectories of agents and the SDV using a mixture
of experts in a unified neural network for prediction and planning;

• We present an efficient and easy to implement decision-making approach that leverages the
predicted trajectories and associated probabilities to improve safety by reducing collisions
between the SDV and other road agents;

• We extensively validate our proposal in a realistic closed-loop simulator and deploy it on an
SDV driving on public roads, confirming its effectiveness and safety;

• The code and hyperparameters for training and testing our model on a public prediction dataset
will be made publicly available.

To the best of our knowledge, this is the first paper that combines a MoE approach with a decision-
making strategy that uses the predicted distribution to drive safely on public roads (Figure 1).

2 Related work

Although many data-driven systems have been recently developed [3, 11] exploiting breakthroughs
in Deep Learning methods, many challenges remain open for the deployment of these systems in the
real world. Deep learned systems can scale and improve with data and are increasingly favored over
hand-engineered approaches that do not scale in engineering effort. However, they also present new
challenges, e.g. how to embed causal relationships and behaviors such as collision avoidance.

Data-driven approaches to planning can be grouped according to their training paradigm, such as
Imitation Learning (IL) [36] and Reinforcement Learning (RL) [29]. Among IL methods, Behavioral
Cloning [2] is one of the most used approaches of imitation, dating back to ALVINN [22] and
showing recent developments such as in [3, 35, 32, 12, 5]. Although imitation approaches showed
significant progress, the covariate shift induced by the policy is still an open problem that can make
the model perform poorly during deployment. On the other hand, Reinforcement Learning [29]
has reached many milestones on a large set of simulated environments. However, its uptake in
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Figure 2: SafePathNet predicts SDV and road agents future trajectories given a vectorial representation
of input scene. Firstly, map, SDV and agent features are encoded independently by PointNet-like
networks. Then, their outputs are processed by a Transformer encoder-decoder network. Finally,
decoder outputs are processed by FFNs predicting SDV and agent future trajectories together with
probability distributions. Additionally, we use a kinematic model after SDV FFN, omitted for clarity.

real-world problems has been slower than expected [20]. While several methods have been proposed
in recent years [28, 24, 17], they only make use of simulated environments or show very limited and
constrained private-road testing, limiting their application in the real world. PredictionNet [16] show
on-road tests too, but the RL policy only controls the SDV longitudinal speed. When tested in the
real world, most of the aforementioned approaches make mistakes, mainly due to covariate shift.
For this reason, safety guarantees are paramount for deployment in real scenarios. The most similar
approach to our method is SafetyNet [32], where a two-stage pipeline is used to perform rule-based
safety checks over a ML-based trajectory. SafetyNet depends on an external rule-based planner based
on [33] and does not scale with more data as the trajectory generator is not learned. On the contrary,
our approach learns to predict diverse trajectories from data, and exploits the SDV and road agent
predictions to improve the safety of the planner.

Other works [10, 21, 8, 9, 30, 16, 1] propose the generation of multiple trajectories in the context
of the SDV motion planning, localization, or road agent prediction. Some of these works [10, 21]
produce predictions independently of each other while others [8, 9] produce scene-level consistent
predictions. While the former approaches can generate unsafe SDV trajectories colliding with other
road agents, the latter often suffer from sample inefficiency due to the large set of possible futures. In
comparison, our approach simultaneously predicts a diverse set of SDV and road agent trajectories
and associated probabilities and leverages them to increase the safety of the planner during inference
in real-time.

3 Methodology

In this section, we first present the multimodal architecture and the training procedure we use to
jointly predict future trajectories of other road agents and plans of the SDV. Then, we present a
simple-yet-effective approach to improve safety of the planner during inference. We propose a
cost-sensitive selection over the predicted SDV trajectory distribution exploiting road agents future
locations to avoid collisions with them.

3.1 Model architecture

We address the joint tasks of prediction and planning with the neural architecture shown in Figure 2,
inspired by previous approaches [11, 32]. Differently from such prior work, which mostly use
unimodal predictions, we model the multimodal trajectory distribution using a Mixture of Experts
(MoE) approach. That is, the deep model predicts different trajectory candidates and a probability
distribution over them. We can then take advantage of these planning alternatives defining a selection
policy to improve driving safety at inference time.

Input and output representation. We represent the driving scene in a vectorized format, and use the
following data as input: (i) SDV as current pose, speed, acceleration, size, moving/stationary history
for Ks seconds; (ii) road agents as pose, size, vehicle type for the current frame and the previous Ka

seconds; (iii) static HD map including lanes, crosswalks, intersections; (iv) dynamic map elements
including other non-moving obstacles and status of traffic lights; (v) goal (route) as the center of the
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lane that the SDV should follow. Each input element points are encoded in SDV-centric reference
frame and include the element type as additional feature.

The model outputs can be split in planning and prediction output. The planning output is composed
of N SDV future trajectories τ i and one probability distribution pi = p(τ i |x) over them. Each SDV
trajectory τ i is defined as a set of Ts discrete states

τ it =
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i
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i
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i
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i
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i
t, j

i
t

}
, (1)

where t represents a timestep in the range [1, Ts], x, y, θ the pose, v the speed, a the acceleration, k
the curvature, and j the jerk. In practice, the model outputs the jerk and curvature kit, j

i
t for each

timestep t and the remaining trajectory features are inferred using a unicycle kinematic vehicle model
from the initial state xi

0, y
i
0, θ

i
0. The probability distribution pi = p(τ i |x) is defined over the N SDV

trajectories τ i and can be use to pick the most appropriate one given the current input. We discuss
this in detail in Section 3.2.

The prediction output is composed of A×M road agents’ future trajectories νja, j = 1, . . .M and A
probability distributions qaj = p(νja |x) over each set of agent M future trajectories νja. Each road
agent trajectory νj is instead defined as a set of Ta discrete states

νjt =
{
xj
t , y

j
t , θ

j
t

}
, (2)

where t represents a timestep in the range [1, Ta] and x, y, θ represent the pose. Similarly to the
planning output, each probability distribution qa, a = 1, . . . A is defined over the M trajectories of
the a-th agent. The distribution can be used to pick the most appropriate trajectory for each agent.

Architectural details. The architecture of SafePathNet is similar to those of VectorNet [11] and
DETR [7], combining an element-wise point encoder [23] and a Transformer [31] (Fig. 2). The
element-wise point encoder consists of two PointNet-like modules that are used to compress each
input element from a set of points to a single feature vector of the same size. A series of Transformer
Encoder layers are used to model the relationships between all input elements (SDV, road agents,
static and dynamic map, route), encoded by the point encoder. Then, a series of Transformer Decoders
are used to query SDV and agents features. We make use of a set of learnable embeddings to construct
the queries of the Transformer Decoders. The SDV embeddings from the point encoder are added to
the set of N learnable embeddings to obtain a different query for each SDV future trajectory that we
aim to predict. Similarly, M learnable query embeddings are used to obtain a variable number of
M different queries for each road agent. This architecture closely resembles DETR object detection
network, fitting our set prediction task well. Here, each query embedding can encode a specific
driving behavior corresponding to one expert of the MoE approach.

Finally, an SDV-specific decoder (FFN) converts each SDV feature to a set of control inputs (i.e. jerk,
curvature) and a kinematic decoder translates them into a future trajectory. Similarly, an agent-specific
decoder converts each agent feature to a future trajectory. In addition to trajectories, the decoder
predicts a logit for each SDV and agent trajectory. For each element, the corresponding logits are
converted to a probability distribution over the future trajectories by applying a softmax function. All
road agents and SDV are modeled independently, but predicted jointly in parallel.

Training procedure. We adopt imitation learning and define our training objective as minimizing
a distance between predicted SDV poses and the ground truth expert trajectories. Similarly, we
minimize distance between predicted and ground truth agents’ future trajectories. We additionally
regularize jerk and curvature corresponding to SDV plans.

Our model represents a MoE and predicts multiple trajectories for the SDV and each road agent,
corresponding to N /M experts, and a probability distribution over each trajectory set, corresponding
to expert selection. To train the experts and expert selection jointly while avoiding mode collapse, we
use a winner-takes-all approach, somewhat similar to previous methods [10]. Similarly to DETR [7],
we formulate a matching cost between predicted and target trajectories and probabilities, making the
expert with minimal cost the winner. Without loss of generality, in the following we describe the loss
applied to one sample of the SDV planning, which is similarly applied to agent prediction too.

In details, we compute matching cost for each trajectory then select one trajectory according to

i∗ = argmin
i

Li
IL + λ(1− pi), where Li

IL =

T∑
t=1

||τ it − τ̂t||1 + βLi
reg, (3)
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where pi is the predicted probability for the trajectory τ i, τ̂ is the ground truth trajectory, λ and β are
weighting factors, and Lreg is a regularization loss. Then, we minimize the following loss

L = Li∗

IL + µLi∗

NLL, where Li∗

NLL = − log pi∗ , (4)

that takes into account the selected trajectory τ i
∗

and combines the imitation and the matching loss.

3.2 Inference-time planning policy

At inference time, we leverage the diverse predicted trajectories τi to compute the cost ci of executing
each of them. Then, we select the trajectory î = argmini ci with minimum cost.

MinCost policy. Given the predicted SDV’s trajectories and the associated probabilities, we can
simply define the cost to be negatively proportional to the predicted probability: ci = −pi. However,
this trivial approach ignores other road agents’ future locations and thus may lead to collisions, as
models can still predict colliding trajectories even when trained with auxiliary collision losses [3].

MinCostCC policy. In the work of [32], a safety layer is added to enforce safety constraints,
e.g. collision avoidance, and legality constraints, e.g. respecting road rules, by checking the SDV
trajectory predicted by the ML-based planner. In case of violations, a fallback trajectory generated
by a rule-based planner is used instead of the ML-based one. While this approach was shown to
substantially increase safety, the fallback trajectories are generated using a rule-based system that
does not improve with data. As a result, the performance of the ML planner — which can improve by
training on more data — is capped by the hand-engineered rule-based planner.

To overcome these limitations, we propose to improve the safety of the planner by leveraging the
predicted SDV trajectory distribution and agents’ predictions instead of relying on external modules.
To this end, we first perform a Collision Check between each future SDV trajectory τ i and the most
probable predicted agents’ locations νj∗ by means of overlap between their bounding boxes. We use
the Separating Axis Theorem (SAT) [6] for efficient computation. Then, we extend the cost defined
previously by adding a cost for any potential collision with other agents:

ci = −pi − αti (5)

where α is a fixed penalty term and ti is the timestep of the first predicted collision. In other words,
we penalize SDV trajectories that are predicted to collide with road agents most probable futures.
If the predicted set of trajectories contains at least one collision-free trajectory or trajectories with
collisions further ahead in the predicted horizon, then our approach can improve the safety of the
planner.

4 Experimental Evaluation

In this section, we first present the proprietary dataset we used to train and validate SafePathNet,
and our experimental setting. Then, we present results of our evaluation, which include simulation,
comparison of prediction performance on a public dataset, and public road tests. We also present an
ablation study of our major components. While we are unable to release our proprietary simulator
and dataset, we plan to release code and hyperparameters for training and testing our model on a
public dataset to facilitate reproducibility.

4.1 Dataset and Experimental Setting

We use a proprietary dataset collected on an SDV platform in challenging urban areas of San Francisco
and Palo Alto to train and evaluate our models. The dataset is composed of scenes spanning from
10 to 30 seconds and containing SDV recorded trajectory, HD map, and outputs of a proprietary
perception system. Training and validation sets have 270 and 60 hours of driving respectively.

We trained the neural model on our training dataset applying the objectives presented in Section 3.
We used the Adam optimizer and a base learning rate of 10−3 with cosine update schedule [18]. We
apply synthetic perturbations to the training data [25, 32] to improve closed-loop performance. We
trained for 40 epochs on a cluster with 8 nodes having 8 GPUs each, using a batch size of 64 samples
per replica. Our model has 3 Transformer encoder and 3 decoder layers, with 5.7M parameters in
total. Training takes about 5 hours. For more information, please refer to the Appendix, Section A.2.
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Table 1: Comparison with competitors in closed-loop virtual evaluation. Results are reported in
number of events per 1k miles with the .95 confidence interval. Lower is better for all metrics.

Planner type Estimated Contacts Close calls Discomfort Brakings Passiveness
ML planner [32]* 71 (52, 97) 116 (91, 148) 45 (31, 67) 85 (64, 113)
ML planner + fallback layer [32]* 42 (28, 63) 75 (55, 101) 284 (243, 331) 737 (670, 810)
SafePathNet (ours) 44 (29, 65) 87 (66, 116) 69 (50, 95) 133 (106, 167)
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Figure 3: Comparison of Estimated Contacts against Discomfort Brakes/Passiveness for different
planners, in events per 1k miles. Lower is better. Our model presents a better trade-off between
comfort and safety.

4.2 Results from Simulation

We first evaluate our approach in simulation, in two different settings, relying on recorded scenes
from the real world. To compare with other methods, we use a high-fidelity simulator which simulates
the SDV physics through a kinematic model and log-replay road agents applying a longitudinal speed
control to avoid front/side collisions. The SDV drives for approximately 580 miles. For ablation
studies, we use an efficient simulator where we do not apply any kinematic constraints, even though
the planner output is constrained by a kinematic model, and log-replay road agents. In this case, the
SDV drives for about 340 miles. The simulators use a high-level representation of the scene; they
do not simulate raw sensor data. In this Section, we compare with our implementation inspired by
SafetyNet [32], since we do not have access to the original implementation.

The reported metrics are: (i) Estimated Contacts (ECs), i.e. number of times the SDV bounding box
is closer to a road agent than 5cm or static obstacle by 1cm; (ii) Close Calls, i.e. number of times
the SDV time-to-collision is less than 1.5 seconds, or SDV time headway is less than 1 second; (iii)
Discomfort Brakes (DBs), i.e. number of excessive braking events; (iv) Passiveness, i.e. number of
times SDV drives slower than in the log by at least 5 m/s while being behind the log. These metrics
are computed as the number of events per 1k driven miles. We also report minADE and minFDE, i.e.
minimum average and final distance error.

We first present results obtained with the high-fidelity simulation. As can be seen in Table 1, the naive
ML-based planner experiences a high number of Estimated Contacts and Close calls to other road
agents. We also report Discomfort Brakes (DBs) and Passiveness, showing the number of excessive
braking events and the number of times SDV drives slower than in the log respectively, per 1k miles.
Enabling the rule-based fallback layer on top of ML-based predictions [32], the safety of the planner
is significantly improved, at the expense of passiveness and comfort (see large increase in DBs).
On the contrary, our fully ML-based model presents comparable performance in terms of estimated
contacts and close calls while having a limited impact to DBs and passiveness. This result confirms
that our approach, leveraging the modelled SDV trajectory distribution and the agent predictions,
improves the safety of the planner without relying on any external rule-based trajectory generator or
impacting the riding comfort significantly (Fig. 3).

Qualitative samples comparing the two polices in our closed-loop simulator are shown in Figure 5.
As highlighted by the green arrows, MinCostCC can successfully avoid collisions with other road
agents. Figure 6 shows additional qualitative samples obtained using the MinCostCC policy. We find
that SDV trajectories mostly differ in speed and acceleration profile due to route conditioning, but
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Table 2: Comparison of prediction
results on Lyft Motion Prediction
Dataset.

Method minADE@3s minFDE@3s

SimNet [4]1 0.71 1.38
Trajectron++ [27]20 0.23 0.40
HAICU [14]20 0.26 0.38

Ours1 0.43 0.86
Ours20 0.22 0.31

Table 3: Simulation ablation study comparing models trained
with or without probability head and multiple experts (mean ±
std over 5 runs).

Prob. head Multiple experts events per 1k miles minADE@3s
SDV agents MinCost MinCostCC SDV agents

✓ ✓ ✓ 300 ± 17.3 183 ± 20.7 0.157 ± 0.004 0.738 ± 0.005

✓ ✓ 571 ± 175 359 ± 35.4 0.081 ± 0.000 0.702 ± 0.002
✓ ✓ 297 ± 17.9 181 ± 23.1 0.156 ± 0.004 0.838 ± 0.007
✓ ✓ 298 ± 18.9 298 ± 18.9 0.316 ± 0.003 0.726 ± 0.007
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Figure 4: (a) We evaluate a single model using fixed expert selection policy. The model learns
a diverse set of driving profiles, ranging from aggressive to passive. When augmenting MinCost
policy with collision check (MinCostCC), we get a safe and comfortable driving policy. (b) We
train our model using different subsets of training data, and evaluate them using MinCost and
MinCostCC policies. MinCostCC policy requires fewer data samples to achieve performance of
MinCost. Moreover, it keeps improving with more data, while MinCost performance plateaus.

show diverse curvature when turning and nudging parked vehicles. Agent trajectories vary in both
curvature, speed and acceleration profile.

4.3 Results on Motion Prediction

We also compare the quality of our agent predictions with the literature on the public Lyft Motion
Prediction Dataset [13]. Results in terms of minADE and minFDE are reported in Table 2. The
superscript value on each method represents the number of per-agent predicted trajectories. As shown,
our approach performs on par with or better than other methods and our unimodal baseline.

4.4 Results from Road Testing

Our model runs in real time on an SDV, integrated in the autonomous driving stack (10Hz). Thus, it
can be deployed and tested on an SDV in the real world.

To validate our proposal in the real world, we first deployed and evaluated it on a private track. In
particular, we successfully tested interactions with lead vehicles, including late braking at intersections
and hard braking, and handling of traffic light intersections. Then, we tested SafePathNet on public
roads letting it drive the SDV in full autonomy in Palo Alto. As can be seen in the attached video, our
approach correctly handles challenging scenarios and safely drives on public roads. This includes
complex situations and intersections where many other road agents are present. The road deployment
confirmed that the planner was comfortable and felt safe for the SDV passengers.

4.5 Ablation study

In this section we present results of an empirical ablation study performed in our efficient simulation.
The goal of the ablation study is to validate that the model learns a wide range of driving profiles, and
that all parts of the model are required for safe and comfortable driving.

We report significant events per 1k miles (e.g. estimated contacts, close calls, divergence from route)
and minADE metrics on the validation set. We run the planner in log replay mode to obtain baseline
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Figure 5: Qualitative results of SafePathNet, comparing MinCost and MinCostCC policy. Combining
SafePathNet and MinCostCC improves the safety by reducing the estimated contacts with other road
agents. (a) In the first simulated scene, we see the SDV colliding with the agent in the third shown
frame when using MinCost whereas the SDV slows down using MinCostCC. (b) MinCost policy
causes a collision with the turning agent in the second frame whereas MinCostCC shows safe distance
between SDV and agent.

events per 1k miles. Since the dataset was created using an automated perception system, SDV and
agent bounding boxes might overlap due to localization errors, resulting in baseline events per 1k
miles close to 100.

Evaluating driving policies separately. In this study, we take a single model predicting 10 SDV
experts and 5 agent experts, and perform simulation using fixed SDV expert selection, ignoring
probabilities and collision checks. Results can be seen in Fig. 4(a). We show aggressiveness and
passiveness metrics, indicating whether the simulated SDV advances or lags behind compared to
logged position. As can be seen, SDV experts cover a wide range of behaviors, from fast aggressive
to slow passive driving. Learning expert selection gives a safe and comfortable policy.

Planning policy. To validate that MinCostCC policy shows fewer estimated contacts than MinCost,
and that the model improves with more training data, we train multiple models using 10%, 25%, 50%
and 100% of training data, and evaluate using both policies. Results are in Fig. 4(b). Both policies
improve with more data samples up to 50%, after which only MinCostCC improves. MinCostCC
requires significantly fewer training samples to achieve similar performance and can steadily improve
adding more training data.

Disabling probability distribution learning. We train a baseline model and a model without the
probability head in Eq. (3) and (4), setting λSDV = µSDV = 0. Results can be found in Table 3. The
model without the probability head shows significantly lower SDV minADE, but shows poor driving
policy with many estimated contacts, as expected.

Unimodal predictions. To validate the importance of having multiple experts for agent prediction
and SDV planning, we train a model setting the number of agent trajectories M to 1 and another setting
the number of SDV plans N to 1. Results can be found in Table 3. In the case of agent trajectories,
setting M = 1 leads to higher agent minADE, confirming that using multiple agent trajectories is
beneficial for the predictions, even though it does not significantly affect the events per 1k miles with
collision check policy. In the case of SDV plans, setting N = 1 leads to substantially more events per
1k miles and higher SDV minADE, confirming that modelling multiple SDV trajectories is beneficial
for both the policies.

5 Discussion

In this paper we presented SafePathNet, a unified neural model for prediction and planning that
learns a distribution over future trajectories, corresponding to different driving profiles. Leveraging
the predicted trajectory distribution, the safety of the planner is improved by penalizing SDV plans
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Figure 6: Additional qualitative results of SafePathNet. (i) In the top left sample, the SDV makes a
right turn. The planned trajectory curves as expected at the intersection. (ii) The top right sample
shows a scene with dense traffic. The SDV comfortably comes to a stop while the other agents around
it are stopped. (iii) In the bottom left sample, the SDV approaches a left turn. The agents around it
also have accurate predictions. (iv) In the bottom right sample, the SDV proceeds at a green traffic
light. Different speed profiles can be seen. The agent to the left of SDV (in the leftmost lane) changes
its most probable mode from going straight to left turn as it continues through the intersection.

that could lead to collisions with other road agents. We evaluated our approach through a realistic
simulator and tested it on a real SDV in both our private testing facility and on public roads, showing
that SafePathNet can be safely deployed in the real world.

Our method also has some limitations. For instance, the predicted distribution is not guaranteed to
contain collision-free trajectories in all cases. However, predicted trajectories improve by adding
diverse training data, increasing the chance of having a collision-free trajectory (see Fig. 4(b)).
Moreover, even when a collision is expected, our model can increase the time-to-collision, increasing
the chances of finding a collision-free trajectory in subsequent re-planning cycles, before the potential
collision occurs. Also, our model does not guarantee scene consistency. Given the positive results in
simulation and on the road, we speculate that the full scene consistency is not essential to improve
the safety of our SDV planning approach. Another limitation is that, even though our method does
not rely on a rule-based trajectory generator, we use a handcrafted cost for the trajectory selection.
Still, the cost is used only for trajectory selection rather than trajectory generation. Finally, while
we acknowledge that our closed-loop results are not reproducible due to the reliance on proprietary
datasets and simulation tooling, we believe that our experiments clearly demonstrate the benefits
of our approach, not only in our closed-loop and on-road tests, but also via competitive prediction
results on the Lyft Motion Prediction dataset.
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A Appendix

A.1 On-road evaluation (attached video)

In the supplementary video, available on the project webpage at https://woven.mobi/
safepathnet, we present the SDV driving in full autonomy mode in the streets of Palo Alto
(CA), in the following scenarios:

• Yielding to cyclists at a stop intersection: SDV stops at an unregulated stop intersection, waits
for cyclists to pass and safely proceeds.

• Left turn and passing a parked unloading truck: SDV stops at a regulated intersection
following a lead vehicle and then executes left turn while also nudging a parked unloading truck.

• Cut-in maneuver: A vehicle merges into SDV lane from an adjacent lane. SDV comfortably
slows down.

• Stop and left turn: The SDV comes to a safe stop at the intersection before proceeding to make
a left turn

• Urban driving in dense traffic: Multiple stretches of dense urban driving in full autonomy
mode without any safety driver interventions.

The above on-road test was executed without using rule-based planners. Note that the video shows
agent trajectory predictions from a standalone integrated system for visualization purposes, which we
plan to update with SafePathNet predictions. Our approach correctly handles challenging scenarios
and safely drives on public roads. This includes complex situations and intersections where many
other road agents are present. The road deployment confirmed that the planner was comfortable and
felt safe for the SDV passengers.

A.2 Implementation Details

Architectural details

As input to the model, we use Ka = 1 second of agent history, while we use Ks = 3 seconds of SDV
history represented by moving/stationary information. The model predicts N = 10 SDV trajectories
with Ts = 45 steps and M = 5 agent trajectories with Ta = 30 steps, both at 10 Hz.

We use 3 layers of PointNet for encoding map and road agents polylines with 128 dimensions. The
outputs are projected to 256d vectors and fed to the Transformer. The learnable query embeddings
for SDV and road agents have the same size. We use 1024d feed-forward networks (FFN) inside
the Transformer. Both Transformer encoder and decoder have 3 layers. The FFNs used as trajectory
decoder are composed of a hidden 512d layer and an output layer with shape dependent of the
prediction horizon. In total the network has 5.7M parameters.

Loss weights

Here we recap the matching cost and loss equations from the main draft.

We compute matching cost for each trajectory then select one trajectory according to

i∗ = argmin
i

Li
IL + λ(1− pi), where Li

IL =

T∑
t=1

||τ it − τ̂t||1 + βLi
reg, (6)

where pi is the predicted probability for the trajectory τ i, τ̂ is the ground truth trajectory, λ and β are
weighting factors, and Lreg is a regularization loss. λ controls the weight of the assignment probability
compared to the imitation loss, while β controls the smoothness of the predicted trajectories. We
empirically set λSDV = 1, βSDV = 1, λagent = 0.04, βagent = 0. We note that we do not apply
regularization to the agent trajectories since they do not have to be executed. We also scale λagent
taking into account that the agent outputs are not regularized and passed through a kinematic decoder.

We minimize the following loss

L = Li∗

IL + µLi∗

NLL, where Li∗

NLL = − log pi∗ , (7)

that takes into account the selected trajectory τ i
∗

and combines the imitation and the matching loss.
Similarly to DETR, we set µ = λ for both SDV and agents.
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Overall, our total loss combines both SDV and agents losses, optimized simultaneously:

Ltotal = LSDV + αLagent, (8)

where α is agent loss coefficient. It is set to 10 in all experiments.

For perturbations we use the same hyperparameters as SafetyNet [32].

13


	Introduction
	Related work
	Methodology
	Model architecture
	Inference-time planning policy

	Experimental Evaluation
	Dataset and Experimental Setting
	Results from Simulation
	Results on Motion Prediction
	Results from Road Testing
	Ablation study

	Discussion
	Appendix
	On-road evaluation (attached video)
	Implementation Details


